1. Geometrical Constructions

• Construction of perpendicular bisector of a line segment

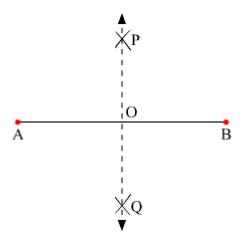
Perpendicular Bisector: A line that bisects a line segment at 90° is called the perpendicular bisector of the line segment.

Example:

Construct a perpendicular bisector of the line segment AB of length 8.2 cm.

Solution:

- (1) Draw a line segment AB = 8.2 cm using a ruler.
- (2) Draw two arcs taking A and B as centres and radius more than 4.1 cm on both sides of AB. Let the arcs intersect at points P and Q. Join PQ.



PQ is the required perpendicular bisector of line segment AB.

Note: We can verify the validity of construction of perpendicular bisector of a line segment using congruence.

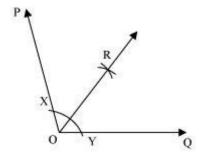
• Construction Of Bisector Of An Angle

Bisector of an angle: A ray that divides an angle into two equal parts is called the bisector of the angle.

Example:

Construct 55° by bisecting an angle of measure 110°.

- (i) With the help of a protractor, draw $\angle POQ = 110^{\circ}$.
- (ii) Draw an arc of any radius taking O as centre. Let this arc intersect the arms OP and OQ at points X and Y respectively.
- (iii) Taking X and Y as centres and radius more than half of XY, draw arcs to intersect each other, say at R. Join ray OR.



Now, OR is the bisector of $\angle POQ$ i.e., $\angle POR = \angle ROQ = 55^{\circ}$

Note: We can verify the validity of construction of angle bisector using congruence.

• Construction of incircle of given triangle:

Example:

Construct incircle of a right $\triangle PQR$, right angled at Q, such that QR = 4 cm and PR = 6 cm.

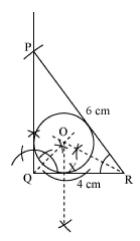
Solution:

Step 1: Draw a $\triangle PQR$ right-angled at Q with QR = 4 cm and PR = 6 cm.

Step 2: Draw bisectors of $\angle Q$ and $\angle R$. Let these bisectors meet at the point O.

Step 3: From O, draw OX perpendicular to the side QR.

Step 4: With O as centre and radius equal to OX, draw a circle.



The circle so drawn touches all the sides of $\triangle PQR$ and is the required incircle of $\triangle PQR$.

• Construction of circumcircle of given triangle:

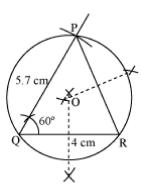
Example:

Construct the circumcircle of $\triangle PQR$ such that $\angle Q = 60^{\circ}$, QR = 4 cm, and QP = 5.7 cm.

Step 1: Draw a triangle PQR with $\angle Q = 60^{\circ}$, QR = 4 cm, and QP = 5.7 cm

Step 2: Draw perpendicular bisector of any two sides, say QR and PR. Let these perpendicular bisectors meet at point O.

Step 3: With O as centre and radius equal to OP, draw a circle.



The circle so drawn passes through the points P, Q, and R, and is the required circumcircle of Δ PQR.

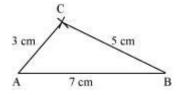
• A triangle can be constructed if all its sides are known.

Example:

Construct a triangle whose sides are 3 cm, 5cm and 7 cm.

Solution:

- 1. Draw a line segment AB of length 7 cm. With A as centre and radius equal to 3 cm, draw an arc.
- 2. With B as centre and radius 5 cm, draw another arc cutting the earlier drawn arc at C.
- 3. Join AC and BC to get \triangle ABC.

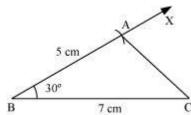


• A triangle can be constructed if the length of two sides and angle between them are given.

Example:

Construct $\triangle ABC$ where BC = 7 cm, AB = 5 cm and $\angle ABC = 30^{\circ}$

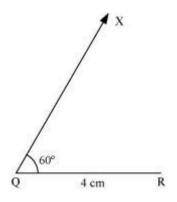
- 1. Draw a line segment BC of length 7 cm and at B draw a ray BX, making an angle of 30° with BC.
- 2. With B as centre and radius equal to 5 cm, draw an arc cutting BX at A.
- 3. Join AC to get the required \triangle ABC.



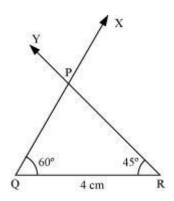
Example: Construct $\triangle PQR$, where $\angle PQR = 60^{\circ}$, $\angle PRQ = 45^{\circ}$ and QR = 4 cm.

Solution:

1. Draw a line segment QR of length 4 cm and draw a ray QX, making an angle of 60° with QR



2. Now, draw ray RY, making an angle of 45° with QR and intersecting QX at P. The resulting Δ PQR is the required triangle.

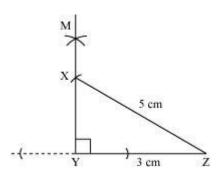


• A right-angled triangle can be constructed if the length of one of its sides or arms and the length of its hypotenuse are known.

Example:

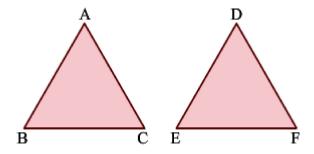
Construct ΔXYZ , right-angled at Y, with XZ = 5 cm and YZ = 3 cm.

- 1. Draw a line segment YZ of length 3 cm. At Y, draw MY \(\text{YZ} \).
- 2. With Z as centre and radius equal to 5 cm, draw an arc intersecting MY at X. Join XZ to get the required Δ XYZ.



1. Congruence of triangles:

In the given triangles, \triangle ABC and \triangle DEF are of the same shape and same size so they are congruent.



(i) Two scalene triangles are congruent for only one correspondence.

For example, in $\triangle PQR$ and $\triangle XYZ$, if $\angle P \cong \angle X$, $\angle Q \cong \angle Y$, $\angle R \cong \angle Z$ and side $PQ \cong \text{side } XY$, side $QR \cong \text{side } YZ$, side $PR \cong \text{side } XZ$ then $\triangle PQR \cong \triangle XYZ$.

(ii) Two isosceles triangles are congruent for two correspondences.

For example, for $\triangle ABC$ and $\triangle XYZ$ with AB = AC and XY = XZ, the possible correspondences are $ABC \leftrightarrow XYZ$ and $ABC \leftrightarrow XZY$. Thus, $\triangle ABC \cong \triangle XYZ$ or $\triangle ABC \cong \triangle XZY$

(iii) Two equilateral triangles are congruent by all the possible correspondences.

2. Congruence of quadrilaterals:

Two quadrilaterals are congruent if they are of same shape and same size.

For example, in \square ABCD and \square PQRS, if AB \cong PQ, BC \cong QR, CD \cong RS, DA \cong SP and \angle A \cong \angle P, \angle B \cong \angle Q, \angle C \cong \angle R, \angle D \cong \angle S then \square ABCD \cong \square PQRS.

3. Congruence of circles:

Circles having equal radii are congruent.

